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Abstract: Introduction: The validity of measurement, which refers to how accurately tools measure what they are intended to measure, is
essential in science. Researchers rely on statistical approaches to test the validity of their measures. One such approach is correlation
analysis. Even though correlation analysis can capture high nonsystematic errors between measures, it can often lead to misleading
conclusions when observations are measured with systematic errors. Methods: We used Monte Carlo simulations with 10,000 iterations to
generate the data in each simulation. Results: We demonstrate how correlation analysis is commonly used to test for validity and how this
method can fail with systematic error. We further propose an alternative to correlation analysis – the Bayesian one-sample t-test – for cases
where using a simple statistical test can be justified. We provide additional simulations as well as an application to real data, showcasing the
implementation of the Bayesian one-sample t-test and how to use it to address the limitations of correlation analysis. Discussion: We suggest
using the Bayesian one-sample t-test to identify both systematic and nonsystematic error and moreover to provide evidence for the null
hypothesis of no differences between two measures. Conclusion: As a test of validity, the Bayesian one-sample t-test supersedes correlation
analysis.
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Introduction

Validity, which refers to the accuracy of a tool to measure
what it is intended to measure, is a vital element of science
– be it an instrument or a method. Ideally, the tools
employed for producing rigorous science should be per-
fectly valid, allowing for errorless measurements. In the
psychological sciences, however, such errorless measure-
ment is often impossible (Schmidt & Hunter, 1996), given
themultifaceted aspects of thehumanpsyche and the avail-
able tools often utilized tomeasure it (e.g., self-report ques-
tionnaires). These error-prone approaches are partially
responsible for the criticisms that psychology, as a scientific
field, has received for its less-than-optimal reproducibility
over the past decade (e.g., Derksen, 2019; see also Scheel
et al., 2021).

Fortunately, this so-called reproducibility (aka replication)
crisis in psychologyhas facilitated promising advancements
in the field, suchas the introductionof preregistered reports
(Chambers & Tzavella, 2022; Nelson et al., 2018; Nosek
et al., 2018) and the promotion of Bayesian statistics
(Derksen, 2019; Dienes, 2014, 2019, 2021a, 2021b; Dienes
& Mclatchie, 2018; Scheel et al., 2021). One way in which
these advancements promote reproducibility is by fostering
validity assurances, which necessitate statistical analyses
that provide evidence regarding the validity of the
employed tools. To comply with these assurances, psychol-
ogy researchers commonly tend to prefer simple statistical
approaches.

Even though sophisticated validity analyses (e.g., speci-
ficity and sensitivity analyses; Marchevsky et al., 2020;
Stites & Wilen, 2020) should often be used, relying on the
simplest statistical modelmay be satisfactory. A simple sta-
tistical model can be easy to implement, save time, offer a
straightforward interpretation, and avoid overfitting and
consequently misinterpreting the data (Blanchard et al.,
2018; Myung & Pitt, 1997). One such simple statistical
model, frequently utilized to test validity, is correlation.

�2024 The Author(s). Distributed as a Hogrefe OpenMind article European Journal of Psychology Open (2024)
under the license CC BY 4.0 (https://creativecommons.org/licenses/by/4.0) https://doi.org/10.1024/2673-8627/a000069



As an illustration, correlation was recently employed to test
the validity of psychometric tools (e.g., Yas�ar et al., 2022),
computerized tools (Drevon et al., 2017), and even meta-
analytic evidence (Phylactou et al., 2022).

Although, under some circumstances, correlations can
be an adequate validity test, in many cases, they might be
insufficient to capture important quantitative differences
between measures, such as systematic error (e.g., a consis-
tent offset of the measure from the true value). In this
simulation study, we argue that, by applying a Bayesian
approach, we can replace correlations with another simple
statistical test, the Bayesian one-sample t-test, which can
serve as amore sensitive validity test. As described in detail
later (see Simulation 3: Bayesian One-Sample t-Test
as a Measure of Validity), the Bayesian t-test can test for
either the presence or absence of quantitative differences
between two measurements (Phylactou, Chen, et al.,
2024; Rouder et al., 2009; Wagenmakers et al., 2010).
Further, using simulated data, we provide three examples
to indicate (1) how correlations are commonly used as a test
of validity, (2) how correlations can fail as a measure of
validity, and (3) how the Bayesian one-sample t-test can
function as a validity test. Finally, we showcase the applica-
tion of the Bayesian one-sample t-test on real data from
earlier work (Charalambous, Phylactou, Kountouri, et al.,
2022).

Simulation 1: Correlations as a
Measure of Validity

Often, one can use a correlation to test the validity of a tool
against another tool of a similar construct. For example,
Charalambous, Phylactou, Kountouri, and colleagues
(2022) used correlation analysis to test the validity of a psy-
chometric tool (Aphasia Impact Questionnaire-21 Greek
Version; AIQ) compared to another tool considered the
“gold standard” in the field: Stroke and Aphasia Quality
of Life Scale-39 (SAQOL; Hilari et al., 2003). Researchers
can distinguish between low, moderate, high, and extreme
validity using predefined cut-offs. Commonly, a correlation
of ρ > 0.9 or ρ < � 0.9 is considered an acceptable validity
cut-off in psychometry, while a correlation between 0.5 >
ρ >�0.5 typically indicates very poor validity (Taherdoost,
2016; see also Charalambous, Phylactou, Elriz, et al., 2022;
Charalambous, Phylactou, Kountouri, et al., 2022; Hilari
et al., 2003, 2018).

To illustrate how to implement a correlation to test the
validity in such a manner, consider a hypothetical scenario
of comparing two weighing scales. One is a perfect scale
that always provides values corresponding to one’s true
weight. Let’s assume that we weighted 100 1-year-old
children on this perfect scale, whose weights (Weightstrue)

stem from a normal distribution, with a mean m = 11.5 kg
and a standard deviation sd = 1.8, as shown in Equation 1
(data based on Fryar et al., 2021).

Weighttrue � Nð11:5; 1:8Þ ð1Þ

The second scale slightly deviates by up to 0.5 kg above or
below the actual weight, which we consider a tolerable
measurement error in this example, where we are weigh-
ing humans. If we assume that any deviation between
�0.5 kg and 0.5 kg in this low error scale has equal
probability (i.e., is nonsystematic), then we can express
this low error using a uniform distribution, as shown in
Equation 2.

Errorlow � Uð�0:5; 0:5Þ ð2Þ
Therefore, for each child, we have a value corresponding to
their trueweight, drawnby thenormaldistributionshown in
Equation 1, and a value corresponding to their slightly inac-
curate weight, their true weight plus some nonsystematic
error drawn by the distribution in Equation 2. We used
Monte Carlo simulations to simulate these distributions.
Specifically, we generated 10,000 simulations from each
distribution for 100observations.All simulationspresented
in this study were generated in Python (v3.9.13), using the
scipy (v1.12.0) andnumpy (v1.26.4) packages,whilewecon-
ducted the statistical analyses using the pingouin package
(v0.5.2). To create the distribution used in Simulation 1,
we drew one of the 10,000 values for each observation at
random. Figure 1A illustrates the simulated distributions
of this example. Given such low error in the second scale
(i.e.,0.5 kg), a correlation analysis between theweight from
the perfect scale and the weight from the low error scale
(see Figure 1B) indicates an almost perfect correlation
(Pearson’sρ= .989, BF10=6.80� 1078, p< .001). From this,
we infer that the two scales provide almost identical values:
The validity is extremely high.

Now consider a third scale, with a higher deviation of up
to 5 kg. As in the previous example, we assume that any
deviation between �5 kg and 5 kg has equal probability
(i.e., is nonsystematic), and we express this as a uniform
distribution, as shown in Equation 3.

Errorhigh � Uð�5; 5Þ ð3Þ

We used the same Monte Carlo approach described above
to generate the distribution of the high-error scale. The dis-
tributions of the simulated weights of the perfect and the
high-nonsystematic-error scales arepresented inFigure 1C.
In this case, we can still find a correlation between the two
scales (Figure 1D), although this correlation is far from
perfect (Pearson’s ρ = .477, BF10 = 31621.97, p < .001), with
the correlation index signifying very poor reliability (i.e.,
�0.5 < ρ < 0.5; see Taherdoost, 2016).
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This example demonstrates how to implement correla-
tions as a simple statistic to test the validity of a measure
or a tool, as compared to a gold standard. Next, we turn to
demonstrating how this analysis can falsely indicate high
validity when, in reality, there is none.

Simulation 2: How Correlations Can
Fail as a Validity Test

As demonstrated above, correlations can offer a simple and
straightforward indication of validity. However, because of
their simplicity as a statistical model, they often produce
misleading results and consequently fail as a test of validity.
Once again, we turn to the weighing scale example and the
normally distributed weights from Equation 1. This time,
however, we consider a faulty scale that deviates systemat-
ically between 4.9 kg and 5.1 kg above the actual weight. If
weassumeequalprobabilityof thiserror,wecanexpress the
deviation as the uniform distribution shown in Equation 4.

Errorsystematic � Uð4:9; 5:1Þ ð4Þ

Thedistribution of the 100 simulated observations resulted
using theMonte Carlo simulation described in the previous
section (see Simulation 1: Correlations as a Measure of

Validity). Figure 2Ashows thedistributions of the simulated
weights deriving from the perfect scale and the scale
with the systematic error above the actual weight. In this
scenario, a correlation analysis between the two scales
(Figure 2B) indicates an almost perfect linear relationship
(Pearson’sρ= .999, BF10= 7.30� 10143, p< .001). Ifwe con-
sider how correlations were previously used to test validity
(e.g., Charalambous, Phylactou, Elriz, et al., 2022;
Charalambous, Phylactou, Kountouri, et al., 2022; Drevon
et al., 2017; Hilari et al., 2018; Phylactou et al., 2022; Yas�ar
et al., 2022), we should assume that the scale with the
systematic error is a valid measure, since the correlation
is almost perfect, although in every measure by the faulty
scale there is a constant difference from the actual
weight between4.9kgand5.1kg. In otherwords, the results
from this correlation analysis are misleading and can be
misinterpreted as evidence of high validity, even though
the two tools provide different observations.

Here, note that further statistical analyses can be
implemented to identify whether correlations correspond
to high validity between the tools orwhether the tools differ
between them. Such analyses concern the calculation of
differences between the slopes and/or the intercepts of
the observed correlations (see Phylactou et al., 2022, for
anexample), compared to theexpected (e.g., perfect) corre-
lation (Figure 2C). However, such analyses are considered

Figure 1. Distributions and scatter plots of the simulated data from a perfect scale, a scale with low deviation, and a scale with high deviation. (A)
The distribution of the weights as observed by the perfect scale (black) and the low-error scale (gray). Given the small measurement error (up to
0.5 kg), the two distributions show high overlap. (B) A scatter plot showing the values obtained by the perfect scale on the y-axis and the values
obtained by the low-error scale. An almost perfect linear relationship is evident. (C) The distribution of the weights observed by the perfect (black)
and high-error (gray) scales. Because of the high error (up to 5 kg), there is very little overlap between the distributions. (D) A scatter plot of the
values observed by the perfect (x-axis) and the high-error (y-axis) scales. A linear relationship still exists between the two observations but with
high variability.
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exploratory and are often omitted (see Charalambous,
Phylactou, Elriz, et al., 2022; Charalambous, Phylactou,
Kountouri, et al., 2022; Drevon et al., 2017; Hilari et al.,
2018; Yas�ar et al., 2022), since they do not offer the benefits
of applying a simple statistical test as described above (e.g.,
Blanchard et al., 2018; Myung & Pitt, 1997; see also
Wagenmakers et al., 2010).

Simulation 2 demonstrates how the use of correlation
analysis to test validity canbemisleading.Consideringboth
Simulations 1 and 2, we conclude that a correlation analysis
can capture random (nonsystematic) error between two
measures; however, if the error is systematic, then the
results might easily be misinterpreted. In terms of psycho-
metrics, we can associate this example with a situation
where one examiner tends to systematically provide lower
or higher scores in a particular test battery because of stric-
ter or more flexible definitions of the psychological charac-
teristic under test. However, this does not necessarily
signify that scientists should turn to complex statistical
models toaccount for all possible variability that theutilized
psychometric tools could expect. In the following section,
we propose using a one-sample Bayesian t-test, which can
be employed as a simple but more sensitive alternative to
correlation analysis.

Simulation 3: Bayesian One-Sample
t-Test as a Measure of Validity

WhyBayesian?onemight think.Asdescribed indetail in the
following paragraphs, advocates in favor of Bayesian statis-
tics (e.g.,Derksen, 2019;Dienes, 2014, 2019, 2021a, 2021b;
Dienes & Mclatchie, 2018; Scheel et al., 2021) argue that,
compared to the traditional Neyman-Pearson frequentist
approach (Neyman & Pearson, 1933), a Bayesian approach
offers numerousadvantages.One suchadvantage relates to
calculating theBayesFactor (BF).TheBFhas theadvantage
of quantifying evidence in favor of either of two competing
hypotheses, such as the alternative hypothesis or the null
hypothesis, as opposed to the frequentist approach of using
a p-value,which can only informabout the rejection (or fail-
ure of the rejection) of the null hypothesis (Dienes, 2014,
2021a; Johansson, 2011; Wagenmakers, 2007; but see Lak-
ens et al., 2020). In addition to the property of the BF to test
evidence in favor of the null hypothesis, the Bayesian
approach offers additional advantages over the frequentist
approach.For example,within theBayesian framework, the
resulting posterior probabilities – and, respectively, the BFs
– are informed by both prior probabilities and the observed

Figure 2. Distributions and scatter plots of the simulated data from a perfect scale, a scale with low deviation, and a scale with high deviation. (A)
The distribution of the weights as observed by the perfect scale (black) and the scale with a systematic error (gray). Given the systematic error
above the true weight (between 4.9 and 5.1 kg above), the mean of the systematic error scale is shifted, creating only minor overlap between the
tails of the distributions. (B) A scatter plot of the perfect (x-axis) and systematic-error (y-axis) scales, which indicates a nearly perfect correlation.
(C) Scatterplots generated by plotting the true values observed by the perfect scales with the low-error (triangle), high-error (circle), and
systematic-error (square) scales, as compared to a perfect linear relationship (black line).
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data. As new data are observed, these probabilities can be
updated. Hence, this continuous nature of Bayesian proba-
bilities, in contrast to p-values, renders the Bayesian frame-
work coherent, consistent, and complete (Jaynes, 2003;
Wagenmakers et al., 2018).

In the context of validity testing, we are interested in the
differences (or lack thereof) between the two tools for each
set of observations. As an indication of validity, no differ-
ences should exist between the two tools, assuming a small
margin of measurement error tolerance. To statistically
analyze differences (e.g., differences between two means),
the frequentist t-test is commonly utilized (Delacre et al.,
2017), which, through the conventional null-hypothesis sig-
nificance testing, provides a p-value that indicates whether
to reject the null hypothesis (i.e., no difference) or not (for a
critical review of this approach, see Scheel et al., 2021). In
other words, using the conventional frequentist approach
to obtaining a p-value, we can only infer the proposed alter-
native hypothesis; but when it comes to the null, the null-
hypothesis significance testing approach does not allow us
to discriminate between the absence of evidence and evi-
dence of absence (Dienes, 2014, 2021a, 2021b; Dienes &
Mclatchie, 2018). However, to use a t-test as a validity test,
we need to be able to provide evidence in favor of no differ-
ence (i.e., the null hypothesis). Put simply, we need to be
able to statistically support a null effect. This complication
could explain why correlation analysis has been preferred
as a validity measure. Specifically, if researchers have to
rely on significant p-values to support a hypothesis, they
are limited in choosing a statistical test that can only reject
anull hypothesis (Scheel,2022). Forexample, under the fre-
quentist approach, a t-test cannot provide any inferences
regarding the validity of tools, because the p-value can only
providean indicationofwhether adifference exists but can-
not inform us about the null hypothesis (i.e., no difference;
see also Dienes, 2014, 2019; Rouder et al., 2009). There-
fore, to provide statistical evidence supporting validity
(i.e., significant p-value), researchers utilize correlation
analysis, so that they can reject the null hypothesis (i.e.,
no linear relationship between the two tools), because, with
theuseof the frequentist t-test, they cannot provide any sta-
tistical support for the null hypothesis (i.e., no difference)
but can only fail to reject it.

However, the alternative – using a Bayesian approach –

does allow us to infer the null hypothesis (Dienes, 2014,
2019, 2021a, 2021b). Within the Bayesian framework, the
statistical models that are implemented provide a ratio,
called the BF. The BF indicates how likely it is for the
observed data to stem from one of two competing theories,
most commonly the alternative and the null hypothesis
(denoted “BF10” and, respectively, “BF01” to signify the
ratio of the null hypothesis over the alternative hypothesis;
Derksen,2019;Dienes,2014,2019,2021a,2021b;Dienes&

Mclatchie, 2018; Rouder et al., 2009; Phylactou & Kon-
stantinou, 2022). For example, a BF10 = 5 indicates that
the data are 5 times more likely to have been observed
under the alternative hypothesis, while a BF10 = 0.2 shows
that the data are 5 times likely to have been observed under
the null hypothesis.

Because the BF can quantify evidence in favor of either
the alternative or the null hypothesis, it can be used to
decide which hypothesis best describes the observed data.
For statistical inference within psychology, BF heuristics
have been proposed (Jeffreys, 1998; Lee & Wagenmakers,
2014) to help researchers set thresholds for deciding
whether to accept the evidence in favor of one hypothesis
or the other. Table 1 shows the proposed interpretations
of various BF values. Even though the practice of setting
specific thresholds for accepting one hypothesis over
another opposes the continuous and updatable nature of
the BF, it may serve as an important avenue enabling scien-
tists to define and test dichotomous claims, which some
argue are crucial for science (Uygun Tunç et al., 2023).
Of note, a recent simulation of 200 million BFs showed
that for the Bayesian t-test, a BF� 3, should be considered
adequate for psychological research, especially when
gathering evidence in favor of the null hypothesis
(Phylactou, Chen, et al., 2024). As such, we similarly pro-
pose that, when using the Bayesian one-sample t-test as a
test of validity, a BF� 3 should be employed as the decision
threshold.

We suggest using a t-test rather than correlation analysis
under the Bayesian approach because correlation analysis
cannot distinguish systematic from nonsystematic error
(unless more sophisticated analyses are performed) under
both the frequentist andBayesianapproaches, as illustrated
in Simulations 1 and 2. In contrast, a Bayesian one-sample t-
test can be used to set a tolerable margin of measurement
error (by adjusting the t-test-test value; see below) and pro-
vide evidence supporting either a difference, or the lack
thereof, when comparing two tools. Notably,more sophisti-
cated Bayesian validity tests were previously proposed
(Schluter, 2009); however, such modeling approaches can
be computationally demanding and go beyond a simple
statistical approach (when this canbedeemedsatisfactory),
which is the focus of the current work.

Table 1. Bayes Factor evidence threshold heuristics (adapted from
Jeffreys, 1998, and Lee & Wagenmakers, 2014)

Bayes factor (BF) Interpretation

1 < BF < 3 Anecdotal evidence

3 � BF < 10 Moderate evidence

10 � BF < 30 Strong evidence

30 � BF < 100 Very strong evidence

100 � BF Extreme evidence
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For the commonly used Bayesian t-test, a prior distribu-
tion is assigned to the alternative hypothesis, which
describes the expected effect size (i.e., the difference; δ)
under the alternative hypothesis. Most commonly in psy-
chological research, this prior distribution is expressed as
aCauchydistribution (Rouder et al., 2009).Oncedatahave
been observed, a posterior distribution can be computed,
which represents the uncertainty about δ (i.e., the differ-
ence between the observed data and the test value of inter-
est). Based on the merit that most comparisons within
psychology concern nestedmodels (i.e., the null hypothesis
contains all parameters for the model of the t-test; Heck &
Bockting, 2023; Wagenmakers et al., 2010), a BF can be
computed using the Savage-Dickey density ratio (Dickey,
1971; see also Heck & Bockting, 2023; Wagenmakers
et al., 2010). Put simply, the Savage-Dickey density ratio
conveniently enables the computation of BFs for nested
models by dividing the height of the posterior distribution
by the height of the prior distribution at the test value (δ)
of interest. Thorough details regarding the Bayesian t-test
as well as mathematical proof are described in previous
research (Fu et al., 2021; Kruschke, 2013; Rouder et al.,
2009).

Note that, to apply a Bayesian approach, researchers
must incorporate some prior assumptions regarding the
data theyare expecting toobserve.Theseprior assumptions
are expressed as probability distributions, usually informed
by the previous literature or, in some cases, by intuition
(e.g., based on the researcher’s expertise; Wagenmakers
et al., 2010). For the Bayesian t-test, these assumptions
are mainly reflected in the prior distribution of the alterna-
tive hypothesis (Rouder et al., 2009), which demonstrates
the magnitude (and sometimes the direction, as discussed
below; see also Dienes, 2021b) of the expected effect size.
Rouder andcolleagues (2009) proposed aprior distribution
to be used as a default for the t-test in psychological
research, expressed as a Cauchy distribution centered on
0 with a scale of approximately r � 0.71 (see Figure 3A).

Others have argued against the use of default priors (often
referred to as objective priors; seeBandyopadhyay&Brittan,
2010; Gelman & Shalizi, 2013; Świaôtkowski & Carrier,
2020) and suggest using, for each specific contrast we are
comparing, different prior distributions to reflect any prior
assumptions (Dienes, 2019; 2021b).

In the case of validity testing, one can adjust the prior dis-
tribution to express how much variability can be tolerated
between the compared measures. The Cauchy is consid-
ered an appropriate distribution to express this variability
because it resembles a normal distribution. But it has fatter
tails, which decay much slower than in the case of the nor-
mal distribution. Thismeans that, under a Cauchy distribu-
tion, values closer to the center of the distribution have a
much greater probability than extreme values, even though
extreme values are still probable. Put simply, in terms of
validity testing, a Cauchy prior distribution can be set
accordingly to reflect the expected magnitude of error
between the two measures being tested. For example, the
scale of aCauchydistribution centeredon0 canbeadjusted
to represent the variance, in terms of the error magnitude,
that we can tolerate (see Figure 3A). Specifically, the
Cauchy proposed by Rouder and colleagues (2009), with
a scale r = 0.71, creates a cumulative probability under
which approximately 80% of the expected observed
values lay between 2 and�2, thus differ by at least amagni-
tude of 2 (compared to 0). Respectively, a Cauchy with a
scale of r = 0.33 reflects a cumulative probability, where
approximately 80% of the expected values lie within a
magnitude of 1; a Cauchy scaled at r = 0.17 creates an
80% cumulative probability of the expected values lying
within a magnitude of 0.5. Table 2 summarizes different
Cauchy scales and cumulative probabilities, which can be
used as an approximation for different levels of magnitude
whencomparing the expectederrorbetweendifferentmea-
sures. Reducing the scale (r) of the Cauchy distribution
informs the analysis that less error is tolerated, whereas
increasing the cumulative probability percentage updates

Figure 3. Example of Cauchy distributions to reflect different magnitudes of expected error. Example of Cauchy prior distributions, with different
scales to inform the one-sample Bayesian t-test. (A) The Cauchy distribution is commonly used to test bidirectional effects, while (B) the half
Cauchy can be used to restrict the expected values to positive or negative values and thus test a directional hypothesis.
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the analysis to create a stricter threshold as evidence for no
difference (but see Dienes, 2019, for an argument about
reporting BF for multiple priors).

Given that, under the Bayesian framework, one can esti-
mate the likelihood of both the null and the alternative
hypothesis, a Bayesian one-sample t-test can, therefore,
offer a simple approach to test whether the values derived
from two differentmeasures are the same or different from
pre-established tolerancemagnitudes (reflected in the one-
sample t-test test value).Asavalidity test, evidence favoring
the null hypothesis (i.e., no difference) indicates no differ-
ences between the two measures, i.e., a BF10 < 1 should be
expected. Numerous thresholds have been proposed con-
cerning the BF value that should be considered substantial,
with variouswork suggesting at least a BF = 3 in favor of any
of the two competing hypotheses (Derksen, 2019; Dienes,
2014, 2021a, 2021b). Note that previous work discussed
that obtaining evidence for the null requires greater power
than evidence in favor of the alternative,which iswhy some
argue favor flexible thresholds (e.g., Dienes 2021a). Thus,
when it comes to validity, researchers should be cautious
when deciding on the validity of their measures based on
the BF. Considering the above, a BF10 < 1/3 should serve
as the bare minimum threshold for evidence of validity.

Because the above can reflect some assumptions regard-
ingvalidity (seeTable2), andwith theBF thresholddefined,
we now turn to an illustration on using a Bayesian t-test in
the context of validity analysis. When employing a t-test
as a validity test, we are interested in the absolute error
when comparing one measure to another. Consequently,
weshould conduct analysesof theabsolutevaluesof thedif-
ference between the two measures (i.e., removing the sign
after subtracting each individual value between two mea-
sures; see Equation 5). The transformation to the absolute
values is an important step, because if the error is accumu-
lated symmetrically around the true value, then the mea-
sures may average around the tolerable error – and thus
the t-test fails to capture the actual difference between
the two measures being tested. Following the transforma-

tion to the absolute values, we must compare the differ-
ences against the magnitude of the error we are willing to
tolerate. For example, ifwe are unwilling to tolerate any dif-
ferences between the two measures, then we should com-
pare the absolute differences against 0. In other words,
the closer the test value is to 0, the less error we are willing
to tolerate. Notably, the specific choice of the test value for
the one-sample t-test depends upon the outcome test mea-
sure and the amount of error we are willing to tolerate.
Because of transforming the values to the absolute differ-
ences, the t-test can now become directional, considering
only differences above the accepted error tolerance value.
Within the Bayesian framework, this is simply reflected by
halving the Cauchy prior to include only positive values
(see Figure 3B). Thus, from here on out, we conduct our
Bayesian t-tests using a half Cauchy prior centered on 0,
with a scale r = 0.17 (see Table 2), which corresponds to a
distribution that allocates an 80% cumulative probability
for values between 0 � 0.5. Put simply, the small Cauchy
scale (r = 0.17) increases the density around the test value,
which represents the null hypothesis, thus applying a very
strong assumption for the test, making it harder to accumu-
late evidence in favor of the null hypothesis (Phylactou,
Chen, et al., 2024). We choose this approach, considering
that it is ideal to increase confidence in the resulting evi-
dence, within the context of validity.

We now turn back to the weighing scale examples for
Simulation 3. In these examples, our prior choice reflects
the assumption that we can tolerate approximately up to
0.5 kg of scale deviance. By adjusting our prior and the test
value of the one-sample t-test, we can reduce or increase
this tolerance accordingly. Once again, we assume that
weweighted 100 individuals onaperfect scale, andwehave
noted that their weights are described by a normal distribu-
tion with meanM = 11.5 (SD = 1.8), as shown in Equation 1.
As before, we are interested in comparing the measure-
ments acquired by the perfect scale (Weighttrue) to those
obtained by the low-error scale (Weightlow-error), which
deviates by up to 0.5 kg (see Equation 2, something we
consider a tolerable error. The first thing we need to do to
apply the Bayesian t-test is to calculate the absolute differ-
ence between each measurement using the formula in
Equation 5

δi ¼ Weightitrue � Weightilow�error

�
�
�

�
�
�; ð5Þ

where idenotes eachchildweighed.Next,weemployaone-
sample Bayesian t-test comparing against the value 0.5,
reflecting the tolerable error, and test for evidence in favor
of the null hypothesis (i.e., H0: δ � 0.5). This comparison
yields a very high ratio in favor of the null hypothesis
(|mean differencetrue-low| = 0.24, BF10 = 1.37 � 10�28,
t(99) = –17.12, p = 1), indicating that, given the observed data,

Table 2. Scale of the t-test Cauchy prior distribution for different
standard deviation thresholds when comparing z-scores across
various distribution cumulative probabilities

Cauchy scale (r)

Cumulative probability

Magnitude 80% 90% 95%

0.5 0.17 0.08 0.04

1 0.33 0.16 0.08

1.5 0.49 0.25 0.12

2 0.71 0.32 0.16

2.5 0.82 0.4 0.2

3 0.98 0.48 0.25

5 1.7 0.8 0.4
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it is 6.14 � 1026 times more likely that the error is equal
to or less than 0.5 kg (H0: δ � 0.5). As reflected by the
posterior distribution, the effect δ was estimated as median
δtrue-low = 0.055, (95% CI = [0.002, 0.276]; Figure 4A). A
BF robustness analysis shows that evidence favoring H0
remains for various assumptions on the prior distribution
ranging from r=0.1 to r= 1.7 (Figure4B).This result provides
evidence of the validity of the small error scale, compared to
theperfect scale, forprecisionupto0.5kg.Onthecontrary, if

we apply the same test on the largely deviating scale, which
deviates up to 5 kg according to the uniform distribution of
Equation 3, the t-test results in evidence supporting the alter-
native hypothesis (|mean differencetrue-high| = 2.41, BF10 =
1.14� 1020, t(99) =13.11,p< .001),andthusthat theerror from
the highly deviating scale is larger than the tolerable 0.5 kg
(i.e., H1: δ > 0.5). The posterior distribution estimated an
effect δ of median. δtrue-high = 1.052, (95% CI = [0.769,
1.314]; Figure 4C), while the robustness analysis indicates

Figure 4. Posterior distributions and Bayes factor robustness analysis of the Bayesian one-sample t-tests comparing the difference between the
simulated perfect scale with the low-deviating scale, the high-deviating scale, and the systematically deviating scale. Posterior distributions and
robustness analyses for the one-sample t-test (one-sided, test value: δ > 0.5) performed on the difference between the perfect scale with the low-
deviating scale (A, B), the high-deviating scale (C, D), and the systematically deviating scale (F, G). The posteriors and reported Bayes factors (in
text) were calculated using a Cauchy scale of r = 0.17, marked with an “x” in the robustness plots. For illustration purposes, the robustness
analyses plot the log Bayes factor, where positive values indicate support for the alternative hypothesis, while negative values indicate support for
the null hypothesis.
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consistent support for H1 under various prior distribution
assumptions (Figure 4D). Moreover, applying the Bayesian
one-sample t-testonthesystematicerror scale,whichconsis-
tentlydeviatesabovetheactualweightaccordingtoEquation
4, the t-test successfully identifies the error by providing evi-
dence in favor of the alternative hypothesis (|mean differen-
cetrue-systematic| =5,BF10=1.33� 10149, t(99) =731.51,p< .001).
The effect δ was estimated as median δtrue-systematic = 1.343,
(95%CI=[0.712, 1.738];Figure4F),withconsistentevidence
in favor of H1 under various prior distribution assumptions
(Figure 4G). These findings indicate that, contrary to the
correlational analysis, the Bayesian one-sample t-test can
successfully identify differences in nonsystematic and
systematic error cases.

Simulation 3 indicates how the Bayesian one-sample
t-test can be applied to test for the validity between two
measures when one serves as the gold standard. It also
shows how the Bayesian one-sample t-test approach can
supersede correlation analysis by successfully identifying
systematic error, which, as shown in Simulation 2, correla-
tion analysis fails to detect.

Real Data Application

We applied our proposed approach to data from previously
published work to further illustrate the application of the
Bayesian one-sample t-test as a validity test. This earlier
work opted to estimate the psychometric properties of the
AIQ (Charalambous, Phylactou, Kountouri, et al., 2022),
which is a tool that assesses the impact of aphasia on the
quality of life of people with aphasia, in a sample of 69 par-
ticipants. As a test of validity, the authors in this study per-
formeda correlation between theAIQ scores and the scores
of a similar (“gold standard”) test, the SAQOL (Hilari et al.,
2003). The authors reported a correlation of ρ = �0.572,
considering it as adequate validity for the AIQ.

Note that the negative correlation between the AIQ and
the SAQOLwas expected, since high scores in theAIQ indi-
cate poorer quality of life, whereas high scores in the
SAQOL indicate greater quality of life. To apply our Baye-
sian one-sample t-test approach, we inversed the scores of
the SAQOL (by subtracting each individual score from the
maximum score value), so that both tools’ scoring follows

Figure 5. Scores, posterior distributions, and Bayes factor robustness analysis of the Bayesian one-sample t-tests comparing the difference
between scores on the AIQ and SAQOL from Charalambous, Phylactou, Kountouri, and colleagues (2022). (A) A scatter plot of individual AIQ and
SAQOL scores from 69 participants. (B) A posterior distribution for the one-sample t-test (one-sided, test value: δ > 2) performed on the difference
between the AIQ and SAQOL. (C) Robustness analysis of the Bayesian one-sample t-test. The posterior and reported Bayes factor (in text) were
calculated using a Cauchy scale of r = 0.71, marked with an “x” in the robustness plot. For illustration purposes, the robustness analysis plots the
log Bayes factor, where positive values indicate support for the alternative hypothesis, while negative values indicate support for the null
hypothesis. AIQ, Aphasia impact questionnaire; SAQOL, Stroke and Aphasia Quality of Life Scale.
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the same direction (i.e., high scores indicate poorer quality
of life forboth tools).Consequently, the correlation remains
identical regardingmagnitude, but the direction of the sign
is reversed, such that it became ρ = 0.572. Further, since
each tool is scored on a different scale (AIQ: from 0 to 84;
SAQOL: from 1 to 5), we rescaled each individual SAQOL
score i tomatch the scoring ofAIQ, using linear transforma-
tion, as shown in Equation 6:

SAQOLi
rescaled ¼

ðSAQOLi � 1Þ
4

� 84 ð6Þ

As expected, this rescalingmaintained the estimated corre-
lation between the raw scores of the two measures (ρ =
0.572). A scatter plot of the AIQ scores and the rescaled
SAQOL scores is presented in Figure 5A.

Similar to Equation 5, we estimated the absolute differ-
ence between the individual AIQ and SAQOL scores (i.e.,
δiAIQ-SAQOL = |AIQ

i� SAQOLi|, where i denotes each partic-
ipant) to conduct the Bayesian one-sample t-test. For our
validity test, we defined a difference of up to 2 score points
as a tolerablemargin of error between the two scales. Thus,
we set 2 as the test value for our Bayesian t-test, which was
informed by a half Cauchy prior centered on0, with a scale
of r = 0.71 (see Table 2). The results of the t-test provided
evidence in favor of the alternative hypothesis (|mean dif-
ferenceAIQ-SAQOL| = 18.736, BF10 = 2603 � 1012, t(68) =
11.786, p < .001), indicating that there are quantitative dif-
ferences between the two scales which are larger than the
tolerable error margin (i.e., H1: δ > 2). The effect δ, repre-
sented by the posterior distribution, was estimated asmed-
ian δAIQ-SAQOL = 1.390, (95%CI= [1.057, 1.730]; Figure 5B),
with consistent evidence in favor of H1 as illustrated in the
robustness plot (Figure 5C). As such, contrary to the
authors’ conclusion, our Bayesian one-sample t-test illus-
trates that quantitative differences are evident in the scores
given by the sample in the AIQ and the SAQOL, thus chal-
lenging the potential validity of the tool(s).

Concluding Remarks

Researchers are often required to rely on simple statistical
approaches to save time, resources, and help avoid overfit-
ting data (Blanchard et al., 2018;Myung&Pitt, 1997).Here,
we make the case that relying on a simple correlation anal-
ysis to test the validity of measures can be a questionable
approach. In Simulation 1, we illustrate how correlation
analysis was previously implemented as a test of validity.
However, through Simulation 2, we provide an example of
how this correlational approach can fail when examining
validity in the case of systematic error. To overcome this
limitation, we propose the alternative of using a Bayesian

one-sample t-test, which, as demonstrated through
Simulation 3, can supersede correlation analysis in identify-
ing both cases of nonsystematic and systematic error. It fur-
ther provides evidence for the null hypothesis of no
differences between two tools.

As these simulations show, the proposed Bayesian one-
sample t-test offers a better validity estimate than correla-
tion analysiswithin the frequentist approach.However, this
Bayesian t-test is not meant to replace any existing sophis-
ticated or established validity tests (e.g., specificity and sen-
sitivity analyses; Marchevsky et al., 2020; Stites & Wilen,
2020). Rather, we suggest that simple reliability tests, such
as the proposed Bayesian one-sample t-test, should be
implemented only when relying on the simplest statistical
approach can be sufficiently justified (Blanchard et al.,
2018; see also Wagenmakers et al., 2010).

Note that additional validity tests do exist as alternatives to
the simple correlation analysis. For example, the intraclass
correlation coefficient (Shrout & Fleiss, 1979) and the
weighted kappa (Cohen, 1960, 1968; Fleiss, 1971) serve as
more sensitive validity and reliability measures to correlation.
Further, specific measures, such as Krippendorff’s alpha,
were developed specifically to estimate systematic error
(Krippendorff, 1970). One benefit of our proposed Bayesian
one-sample t-test over these alternatives is that the t-test pro-
vides ameasure of evidence (i.e., BF), allowing us to compare
how strongly the evidence supports the existence of a differ-
ence between the measurements under test. Subsequent
work could investigate how the Bayesian one-sample t-test
compares to other validity (or reliability) measures such as
ICC, weighted kappa, and Krippendorff’s alpha.

Here, we proposed the Bayesian one-sample t-test based
on simulations and an application on a single dataset; this
limitation should be discussed. Implementing the Bayesian
t-test as a validity test in a real-world context might reveal
further validity issues not thoroughly discussed here. For
example, rescaling or standardization might be required
when applying the approach to real data (see Real Data
Application). In some cases, this approach might result in
similar issues as the ones discussed against using correla-
tion analysis (i.e., failing to identify systematic error).
Specifically, some standardization approaches (e.g., z-
scores) might remove any possible systematic error
between the two measurements at-test, thus making the
Bayesianone-sample t-test approachprone to the same lim-
itations of correlation analysis. Future work could focus
on testing the proposed Bayesian one-sample t-test in
additional real-world applications using different standard-
ization or rescaling approaches to discover possible limita-
tions and strengths.

In conclusion, common practices used in psychological
research, such as correlation analysis as a test of validity,
can often be misleading. We show here that correlation
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analysis provides misleading conclusions regarding
validity when there is systematic measurement error. As
an alternative, we propose implementing the Bayesian
one-sample t-test, which supersedes correlation analysis
as a test of validity, since it can successfully identify both
systematic and nonsystematic error and further provides
evidence for the null hypothesis of no difference between
two tools.
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